

Restoration of Sand Mined Wetlands in the Wild Duck Lake Natural Reserve, Beijing: Approaches and Evaluation

Manyin Zhang, Lijuan Cui, Wang Yifei, etc. Institute of Wetland Research, CAF

中国林业科学研究院湿地研究所

 10 kilometers to the west of Yanqing County

• A small village

 Inside Wild Duck Lake Nature Reserve

eabout 56 ha

the project area(Google Earth Sep. 2007)

中国林业科学研究院湿地研究所

Institute of Wetland Research, CAF

Site selection

Potential risks

- Recommended by Beijing Municipal Bureau of Landscape and Forestry & Yanqing County Forestry Bureau.
- Confirm with the land ownership
- Confirm the tenure

中国林业科学研究院湿地研究所

Ecological Condition

 Gravel soil with poor waterretention capacity .

• Native vegitaitons:

- reed, sedge and cattail community, Nymphoides communities;
- tree species are Populus, Salix, Ulmus and other.

Climate condition

- The Temperate continental monsoon climate
- The average temperature is 8 °C
- The Annual precipitation is 493 mm with large annual variation (274mm-747.1mm), Annual evaporation is more than 1700mm.

Baseline analysis

Hydrological conditions

- a group of separated water bodies of different sizes,
- water supply is mainly from natural precipitation and underground seepage.

Low-lying area

Hydrological conditions

Land covers	Area (ha)	Percent %
Bare soil	15.13	27.0
Sand mining slash	10.70	19.1
Wetland vegetation	1.36	2.4
Open water	10.56	18.9
Terrestrial vegetation	11.26	20.1
Agricultural land	7.01	12.5
Total	56.02	100

中国林业科学研究院湿地研究所

Potential risk analysis

Ecological status analysis

Disturbance analysis

It is feasible!

中国林业科学研究院湿地研究所

Institute of Wetland Research, CAF

Artificial promotion and the ecological restoration

Habitat transformation, self-design, mainly select native species

From nature, beyond nature

Function optimization, landscaping, assisting update

Be suitable for local conditions, cost savings

Abide by the natural conditions, water storage, adaptive management

Be ecological, natural and economical

Base repairing

Hydrology adjustment

revetment strengthening

vegetation reconstruction

adaptive management

Design objective and target

 The overall objective of restoration : Normal ecological functions of wetlands; Symbolic function selection (water bird habitat); Abundant biodiversity

• Target ecosystems:

Vegetation(artificial promotion) + Animals (natural recovery) Shrubs (Artificial) - Herbal (Natural) Wetland Simulation of natural wetlands succession process

Achieve functional restoration through structure restoration

- Restored hydrological regimes
- Micro-topography modeling
- Soil organic matter recovery
- Vegetation planting
- Construction of ecological revetments

Restored hydrological regimes

Small water body enlarging
Small water body connection
Partial deep digging
Partial impede water flow

Micro-topography modeling and reshaping

Shoal Construction

Small water surface regulation

Habitat island creation

Soil organic matter recovery

Layered backfill

Plant hole backfill

Plant trough backfill

volume of earthwork: 10,000 Cubic meter loam soil

Institute of Wetland Research, CAF

Vegetation planting

- Small water surface vegetation planting
 Large water surface vegetation planting
 vegetation exposed from beach in normal water level
- vegetation planting below
 Normal water level

Vegetation planting

Waterfront vegetation planting
Buffer zone vegetation planting
slope protection vegetation planting

Institute of Wetland Research, CAF

Construction of ecological revetments

- Timber pile slope protection
 Willow timber pile
- Rock slope protectionDifference size
- Eco-bags slope protection
 Long-life(anti ultraviolet rays)
- Ecological concrete slope protection

Management and monitoring

- After the basic completion of restoration project, certain signs points should be set according to the monitoring requirements to regularly collect water samples and soil samples, and to monitor the effectiveness of restoration project implementation.
- Set a number of sample plots, to observe the biodiversity of wetlands, plant growth, the number of animals (including soil fauna), plant water use data, and to assess the ecological functions of vegetation.
- Use the mobile weather station to observe the specific periods of meteorological data (including precipitation and wetland water level changes).

Soil organic content significantly increased after the restoration

Through the investigation of soil organic matter content in the recovery area and the contrast area in 2009, the soil organic matter content of 0-10cm is higher than that in the control area.

Depth (cm)	Types	Sample plots					
		1	2	3	4	5	6
Surface soil	Contrast area*	12.85	12.73	12.12	12.84	12.47	12.82
	Recovery area	13.12	13.16	13.26	13.07	13.17	13.28
0~10	Contrast area*	12.94	12.70	12.24	12.73	12.96	12.59
	Recovery area	13.16	12.84	12.81	13.05	13.30	13.21
10~20	Contrast area*	13.04	12.08	12.60	12.91	13.10	12.98
	Recovery area	13.04	12.87	12.63	13.06	13.14	13.28

Soil animal diversity significantly increased after the restoration

Period	Samplt plots	Shannon Wiener Index (H')	Hmax	Uniformity index(J')	Dominance index (D)	1/D
Fall	Contrast area	0.588	0.602	0.976	0.253	3.960
	Natural wetlands	0.790	1.146	0.690	0.223	4.477
	Restoration area	0.718	0.954	0.752	0.218	4.579
Winter	Contrast area	/	/	/	/	/
	Natural wetlands	0.391	0.477	0.819	0.393	2.545
	Restoration area	0.359	0.602	0.596	0.560	1.786

Vegetation types and cover significantly increased after the restoration

Wetland vegetation cover: $3\% \rightarrow \Box 49\%$ Water surface area: $18.9\% \rightarrow \Box 26\%$. Plant species: $74 \rightarrow 204$ (38 kinds of aquatic plants, 90 kinds of wetland plants 90)

Evaluation

The species and quantity of wetland birds significantly increased

Chinese name	scientific name	Before	After
戴胜	Upupa epops	+	++(2009)
灰斑鸠	Streptopelia decaocto	+	+(2009)
灰椋鸟	Sturnus cineraceus	+	++(2009)
小鹀	Emberiza pusilla	+	++(2009)
苍鹭	Grey heron(Ardea cinerea)	_	+(2009)
大白鹭	Great Egret (Ardea alba)	—	+(2009)
灰鹤	Common crane(Grus grus)	+	++(2009)
绿头鸭	Mallard Duck(Anas platyrhynchos)	+	++(2009)
赤麻鸭	Ruddy shelduck(tadorna ferruginea)	+	++(2009)
白腰草鹬	Green Sandpiper(Tringa ochropus)	-	+(2011)
小鸊鷉	Little Grebe(T. ruficollis)	-	+(2011)
红脚隼	Amur Falcon(Falco vespertinus)	-	+(2011)
扇尾沙锥	Common Snipe(G. gallinago)	-	+(2011)

2011.5

This case study on the post-mining restoration techniques and success can provide a suitable guide for the restoration of other similar degraded wetlands.

Thank you for your attention!